If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2-32k=0
a = 9; b = -32; c = 0;
Δ = b2-4ac
Δ = -322-4·9·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-32}{2*9}=\frac{0}{18} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+32}{2*9}=\frac{64}{18} =3+5/9 $
| 3+7n+2n=24 | | 8+5u=28 | | 15=-7x+22 | | 2y=6(-8)+56 | | -9-9(5+2v)=0 | | -4(3-2)=-6(2s-1)-2 | | 8z+-4(-2z+-5)=-8z-100 | | (3x+9)(4x-10)=0 | | (3x+)(4x-10)=0 | | 10x+58+260-16x+90=360 | | 3x+4(7+-1)=22 | | 10x+58+260-16+90=360 | | (8+u)(4u-7)=0 | | 12400=13600(4x) | | j2=–11 | | 6(10^3x)=25 | | 2y-6=8-y | | 128+52+4+(x-15)=180 | | 128+52+4+(x-5)=180 | | 2+1.25f=10-2.57f | | -8t-23=23 | | 6y=55.8 | | r+17.9=56.4 | | 10+3(x-5)=-3(x+1) | | x-75.3=42.8 | | 8b=48. | | -3a+4=a-8 | | y/2.2=4.2 | | –8+y=4+3y | | ×2+5x+6=0 | | 128+52+47+(x-15)=180 | | 28/k=14 |